Research
My research focuses on Mechanistic Interpretability, AI Safety, and Machine Learning applications for Space Systems. I build tools to reverse-engineer foundation models and verify their reliability in high-stakes scenarios
An Adaptive Latent Semantic Analysis Framework for Binary Text Classification
Baimam Boukar JJ, Isaac Touza, Kaladzavi Guidedi
International Journal of Information Management

Zero-Shot Neural Priors for Generalizable Cross-Subject and Cross-Task EEG Decoding
Baimam Boukar JJ, Brandone Fonya, Nchofon Tagha Ghogomu, Pauline Nyaboe
Medical Imaging with Deep Learning (MIDL) 2026

Retrieval with Multiple Query Vectors through Anomalous Pattern Detection
Baimam Boukar JJ, Allassan Nken, Miriam Rateike, Celia Cintas
AAAI Conference on Artificial Intelligence 2026

Mapping Socioeconomic Air Quality Disparities In Rwanda Using Sentinel-5P TROPOMI Data In Google Earth Engine
Baimam Boukar JJ, Kamikazi Raissa, Bertin Ndahayo, Evelyne Umubyeyi
IEEE MIGARS 2025

Explainable Deep-Learning Based Potentially Hazardous Asteroids Classification Using Graph Neural Networks
Baimam Boukar JJ, Clarence Worrel
Harvard AstroAI Workshop 2025.

Computer Vision-based Calibration of Visual Landing Aids Using Autonomous Drones (PAPI Case Study)
Baimam Boukar JJ, Alice Mugengano, Jonathan Kayizzi, Richard Muhirwa
IEEE Aerospace Conference 2026.